References

- BAENZIGER, N C., DOYLE, J. R. & CARPENTER, C. (1961). Acta Cryst. 14, 303.
- BENNETT, M. J., COTTON, F. A. & WEAVER, D. L. (1966). Nature, Lond. 212, 286.
- COTTON, F. A. & ELDER, R. C. (1964). Inorg. Chem. 3, 397. COTTON, F. A. & FRANCIS, R. (1960). J. Amer. Chem. Soc.
- 82, 2986. COTTON, F. A. & FRANCIS, R. (1961). J. Inorg. Nucl. Chem.
- 17, 62. Cotton, F. A., Francis, R. & Horrocks, W. D., Jr. (1960).
- J. Phys. Chem. 64, 1534. COTTON, F. A. & WILKINSON, G. (1966). Advanced Inorganic Chemistry, A Comprehensive Course, 2nd ed., p. 533. New York and London: John Wiley (Interscience).
- Coulter, C. L., GANTZEL, P. K. & McCullough, J. D. (1963). Acta Cryst. 16, 676.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104
- CRUICKSHANK, D.W. J. (1949). Acta Cryst. 2, 154.
- CRUICKSHANK, D.W. J. (1960). Acta Cryst. 13, 774.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.

- FRANCIS, R. & COTTON, F. A. (1961). J. Chem. Soc. p. 2078. IBERS, J. A. (1962). In International Tables for X-ray Crystallography (1962).
- International Tables for X-ray Crystallography (1959). Vol. II, p. 295. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 213. Birmingham: Kynoch Press.
- LINDQUIST, I. & EINARSSON, P. (1959). Acta Chem. Scand. 13, 420.
- LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures, p. 308. London: Bell.
- MEEK, D. W., STRAUB, D. K. & DRAGO, R. S. (1960). Bull. Chem. Soc. Japan, 33, 861.
- OI, S., KAWASE, T., NAKATSO, K. & KUROYA, H. (1960). Bull. Chem. Soc. Japan, 33, 861.
- PAULING, L. (1960). Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- THOMAS, R., SHOEMAKER, C. B. & ERIKS, K. (1966). Acta Cryst. 21, 12.
- VISWAMITRA, M. A. & KANNAN, K. K. (1966). *Nature, Lond.* **209**, 1016.
- ZIMMERMANN, I. C., BARLOW, M. & MCCULLOUGH, J. D. (1963). Acta Cryst. 16, 883.

Acta Cryst. (1967). 23, 796

The Crystal Structure of Two Modifications of Tetraethylammonium Triiodide, $(C_2H_5)_4NI_3$

BY TINY MIGCHELSEN AND AAFJE VOS

Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 13 May 1967)

The crystal structures of two modifications, I and II, of $(C_2H_5)_4NI_3$ have been determined by threedimensional X-ray methods. Modification I crystallizes in space group *Cmca* with $a=14\cdot207$, $b=15\cdot220$, $c=14\cdot061$ Å, e.s.d. $0\cdot05\%$, Z=8; II crystallizes in space group *Pnma* with $a=14\cdot552$, $b=13\cdot893$, $c=15\cdot156$ Å, e.s.d. $0\cdot05\%$, Z=8. Anisotropic least-squares refinement was carried out with 909 independent reflexions for I ($R=0\cdot045$) and with 1094 reflexions for II ($R=0\cdot042$). In I, there are two independent I_3^- ions at special positions with symmetry 2/m; the bond lengths in the two symmetrical I_3^- ions are $2\cdot928$ and $2\cdot943$ Å, e.s.d. $0\cdot0025$ Å. In II there are two independent I_3^- ions; the ions are nearly linear, but asymmetric with bond lengths of $2\cdot912$, $2\cdot961$ and $2\cdot892$, $2\cdot981$ Å, e.s.d. $0\cdot0035$ Å. A VESCF molecular orbital study of the electronic structure of the triiodide ions, including the effect of the crystal field, was made. A bond order *versus* bond length curve could be obtained.

Introduction

The nearly linear triiodide ion varies in structure with its environment in the crystal. Symmetric ions with equal bond lengths have, for instance, been observed in $(C_6H_5)_4AsI_3$ (Mooney Slater, 1959) whereas in crystals of CsI₃ (Tasman & Boswijk, 1955), the ions are asymmetric with a difference in I–I bond length of approximately 0.2 Å. From the data available at that time, Rundle (1961) concluded that the asymmetry and the total length of the ions increase with decreasing size of the surrounding cations. Hach & Rundle (1951) as well as Havinga & Wiebenga (1959) ascribe the variations in bond length to the influence of the (electrostatic) crystal field. Their qualitative conclusions have recently been supported by Brown & Nunn (1966) for the triiodide ions in $(C_6H_5)_4AsI_3$ and in CsI₃ by theoretical variable electronegativity self-consistent field (VESCF) molecular orbital calculations in which the crystal field was taken into account. Mooney Slater (1959) and Slater (1959), on the other hand, have suggested that in certain crystals 'pressure' may force the I_3^- ions to become shorter and more symmetric.

Examination of the structural data on which these discussions are based shows that most of the data used do not give reliable information on the lengths of the I-I bonds in I_3^- ions. In $(CH_3)_4NI_5$, $(C_2H_5)_4NI_7$ and Cs_2I_8 , the I_3^- ions show strong interaction either with each other or with iodine molecules so that complexes with I_5^- , I_7^- and I_8^{2-} ions respectively occur in these

crystals (Hach & Rundle, 1951; Broekema, Havinga & Wiebenga, 1957; Havinga & Wiebenga, 1958; Havinga, Boswijk & Wiebenga, 1954). 'Separate' I_3^- ions have been studied in NH₄I₃ (Mooney, 1935), CsI₃ (Tasman & Boswijk, 1955) and in (C₆H₅)₄AsI₃ (Mooney Slater, 1959). The results of the early crystal analysis of NH_4I_3 could not be considered as accurate, however. Structure determinations of triiodide compounds having cations of sizes in between the small Cs⁺ and large $[(C_6H_5)_4A_5]^+$ ions had not been reported. We started the structure determinations of some triiodide compounds with moderately large cations. (CH₃)₄NI₃ was studied first. Accurate I-I bond lengths could not be obtained, however, because of the occurrence of a super structure and also because of noticeable changes in the intensities of the weak reflexions during the X-ray exposures. The compound $(C_2H_5)_4NI_3$ appeared to be more suitable for a detailed structure determination. We were able to show that there are two crystalline modifications of this compound, one with symmetric and another with asymmetric $I_{\overline{3}}$ ions. This invalidates the close connexion between cation size and structure of I_3^- ion as suggested earlier (Rundle, 1961).

Experimental

Sample preparation

 $(C_2H_5)_4NI_3$ was obtained as a fine powder by adding iodine to an equivalent amount of $(C_2H_5)_4NI$ dissolved in alcohol. Large red-brown crystals were grown from a solution in methanol by slow evaporation of the solute. The crop appeared to contain two different crystalline modifications. Preliminary X-ray work was done first on modification I (space group *Cmca*). The presence of modification II (space group *Pnma*) was noticed later. As the crystals do not differ in shape or colour, the symmetry of the crystals used for the structure determination was checked by making Weissenberg photographs.

Unit cell and space group

The cell dimensions of the orthorhombic crystals were obtained from Weissenberg photographs taken with Ni-filtered Cu radiation; the zero-level pictures were superimposed with NaCl reflexion spots for calibration purposes. The lengths of the axes were obtained by least-squares adjustment of the $\sin^2\theta$ values of a large number of zero-level reflexions (λ (Cu $K\alpha$) = 1.5418, λ (Cu $K\alpha_1$) = 1.54051, λ (Cu $K\alpha_2$) = 1.54433 Å). The cell dimensions are

$$a = 14.207, b = 15.220, c = 14.061$$
 Å,
e.s.d. 0.05% for modification I,

$$a = 14.552, b = 13.893, c = 15.156 \text{ A},$$

e.s.d. 0.05% for modification II.

There are 8 molecules per cell. The systematic absences indicate as possible space groups Cmca and C2ca for modification I, and Pnma and $Pn2_1a$ for II. The centrosymmetric space groups Cmca and Pnmawere adopted during the structure determination; the successful refinement of the structure confirmed this choice.

Intensity data

Three-dimensional intensity data were collected with an automatic single-crystal Nonius diffractometer (Zrfiltered Mo radiation, θ -2 θ scan method). Reliable intensities were obtained for 909 reflexions of modification I and 1094 of modification II. Corrections for absorption (μ =62·0 and 61·5 cm⁻¹ respectively) were calculated with a program according to the Busing & Levy (1957) scheme. The dimensions of the bounding

Table 1. Final fractional coordinates and isotropic thermal parameters for $(C_2H_5)_4NI_3$ (I)* The standard deviations are given in parentheses[†]. For numbering of atoms see Fig. 1(a).

	x	у	Z	В
I(1)	0	0	0	
I(2)	0	0.19096 (12)	0.02518 (12)	
I(3)	0.5	0	0	
I(4)	0.5	0.02878 (9)	0.20699 (9)	
Ń	0.25	0.2915 (9)	0.25	3·6 (2) Ų
C(1)	0.2825 (14)	0.1723 (12)	0.1274 (13)	7.2 (4)
C(2)	0.3228 (10)	0.2343 (9)	0.2023(10)	5.0 (3)
C(3)	0.1965 (9)	0.3481 (9)	0.1794 (9)	4.5 (2)
C(4)	0.2571 (11)	0.4122(10)	0.1229 (10)	5.5 (3)

* The very inaccurate parameters of the hydrogen atoms are not given. Introduction of these atoms in the structure factor calculation hardly affects the F_c values.

† In the Tables the e.s.d.'s in the atomic parameters are given in units of the last decimal place.

Table 2. Anisotropic thermal parameters $(Å^2)$ for the iodine atoms in $(C_2H_5)_4NI_3$ (I)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}
I(1)	0.0460 (8)	0.1037 (15)	0.0491 (10)	0	-0.0037 (10)	0
I(2)	0.0579 (8)	0·0986 (12)	0.0955 (11)	0	-0.0135(10)	0
I(3)	0.0389 (7)	0.0537 (9)	0.0678 (11)	0	-0.0054 (8)	0
I(4)	0.0501 (6)	0.0661 (7)	0.0639 (8)	0	-0.0068 (6)	0

Table 3. Observed and calculated structure factors for $(C_2H_5)_4NI_3$ (I)

The values listed are $10F_o$ and $10F_c$.

planes of the crystals were determined as accurately as possible. The dimensions of the crystals used were approximately $0.22 \times 0.22 \times 0.14$ mm³.

Structure determination and refinement

$(C_2H_5)_4NI_3(I)$

From the strong intensities of the reflexions h00(h=2n) and geometrical considerations it could be concluded that the I_3^- ions lie on the mirror planes (0, y, z) and $(\frac{1}{2}, y, z)$. The y and z coordinates were deduced from a [100] Patterson projection. The Patterson map could be interpreted by assuming that the structure contains two independent I_3^- ions at special positions with symmetry 2/m. A structure factor calculation showed the trial model to be essentially correct.

The eight $(C_2H_5)_4N^+$ groups could be placed in holes formed by eight I_3^- ions at the eightfold special position 8(e) in space group *Cmca*. The coordinates of the nitrogen and carbon atoms could be obtained from a three-dimensional F_o synthesis. Isotropic least-squares refinement with all observed reflexions *hkl* gave R =0.104. During the following refinement cycles with anisotropic thermal parameters for the iodine atoms alone, *R* dropped to 0.045. The weighting scheme was

$$w = [1 + (|F_o| - 125)^2/4339]^{-1}$$
.

Positive regions indicating positions of the hydrogen atoms could be seen in the final difference map including only those reflexions with $(\sin \theta)/\lambda < 0.4$ Å⁻¹; their parameters were not refined. The least-squares calculations were done on a TR4 computer with a program written by Palm and Peterse according to Cruickshank's (1961) scheme. The scattering factors were represented by analytical functions according to Moore (1963).

The final coordinates and thermal parameters with their e.s.d.'s as calculated from the least-squares residuals are given in Tables 1 and 2. The calculated structure factors based on these parameters are compared with the observed values in Table 3.

$(C_2H_5)_4NI_3$ (II)

In the space group Pnma adopted for the structure determination, the mirror planes are perpendicular to the y direction. The strong intensities of the reflexions 0k0 (k = 2n) indicate that the I₃ groups are located on these mirror planes, which implies that there are two independent I_3^- groups in the cell. Because of overlap in the [010] projection the sections y=0 and y=0.5 of a three-dimensional Patterson synthesis were calculated to determine the positions of the iodine atoms. After having found the positions of the iodine atoms, we obtained the coordinates of the $(C_2H_5)_4N^+$ groups (at eightfold general positions) from a three-dimensional F_o map. Refinement of the structure was carried out in the same way as described for modification I. The indices R were 0.090 after isotropic refinement, and 0.042 after anisotropic refinement (anisotropic thermal parameters for iodine atoms only). The weighting scheme was

$$w = [1 + (|F_o| - 137)^2 / 11250]^{-1}$$

The final positional and thermal parameters with their e.s.d.'s are listed in Tables 4 and 5. The calculated structure factors based on these parameters are compared with the observed values in Table 6.

Table 4. Final fractional coordinates and isotropic thermal parameters for $(C_2H_5)_4NI_3$ (II) The standard deviations are given in parentheses. For numbering of the atoms see Fig.1 (b).

	x	у	Z	В
I(1)	0.03341 (16)	0.25	0.16504 (14)	
I(2)	0.01230 (13)	0.25	-0.03060(12)	
I(3)	<i>−</i> 0·00035 (16)	0.25	-0.22102(14)	
I(4)	0.29817 (14)	0.25	0.02374 (13)	
I(5)	0.49541 (14)	0.25	-0.00875(10)	
I(6)	0.69561 (14)	0.25	-0.04362(11)	
N	0.2590 (9)	0.4911 (10)	0.2936 (8)	4·2 (3) Å2
C(1)	0.1568 (15)	0.5254 (17)	0.1624 (13)	7.4 (6)
C(2)	0.2171 (13)	0.5646 (14)	0.2335 (12)	6.0 (5)
C(3)	0.1846 (13)	0.4346 (14)	0.3414 (11)	5.7 (4)
C(4)	0.1262 (14)	0.4948 (17)	0.4024 (13)	6.9 (5)
C(5)	0.3920 (15)	0.4606 (19)	0.1852 (15)	8.1 (6)
C(6)	0.3136 (13)	0.4179 (15)	0.2414 (12)	6.2 (5)
C(7)	0.3215(13)	0.5470 (15)	0.3581 (12)	6.0 (5)
C(8)	0.3716 (14)	0.4818 (16)	0.4216 (14)	7.0 (5)

Table 5. Anisotropic thermal parameters (Å²) for the iodine atoms in $(C_2H_5)_4NI_3$ (II)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}
I(1)	0.0999 (17)	0.0723 (13)	0.0943 (14)	0	0	-0.0121(12)
I(2)	0.0658 (12)	0.0522 (9)	0.0973 (13)	0	0	-0.0047 (12)
I(3)	0·0995 (16)́	0.0714 (12)	0·0949 (14)	0	0	-0.0117(13)
I(4)	0.0777 (13)	0.0617 (11)	0.0887 (13)	0	0	-0.0024(12)
I(5)	0.0846(12)	0.0479 (8)	0.0564 (9)	0	0	-0.0013 (10)
I(6)	0.0837 (13)	0.0632 (11)	0.0632 (11)	0	0	0.0107 (11)

Discussion

Arrangement of the ions

The crystal structures of the two modifications of $(C_2H_5)_4NI_3$ are shown in Fig. 1. The bond lengths and angles are given in Tables 7 and 8. The standard deviations in these Tables are calculated from the standard

deviations as estimated for the atomic coordinates from the least-squares residuals, with the errors in the cell dimensions also taken into account.

Both crystals have two independent I_3^- groups in the unit cell which lie on mirror planes. The Figure clearly shows that the arrangement of the I_3^- groups within a layer is remarkably similar in the two compounds. The

Tab	le	6.	Ol	bserve	ed	and	ca	lcul	at	еd	st	ruc	cture	fa	ct	ors	; for	(C	$_{2}H$	[5))₄N	I3 ((II)
						The	val	ues	lis	teo	1 a	re	10 <i>F</i> o :	ano	d]	10 <i>F</i>	c.						
			50	c'a u			~ •					~~	~~	н	×	L.	FO	FC	н	×		50	

н	K L	FO	FC	н	ĸι	FO	FC	н	ĸ	. FD FC	: н	ĸ	L FO	FC	н	ĸ	L F0	FC	н	ĸц	FO	FC	н	ĸL	۴O	FC	
H 240801437456789011350173456780114143456792301234568901231514234878011211434567801131234567891121120123456789		$\begin{array}{c} F_0 \\ 2474 \\ 14\\ 559 \\ 2127 \\ 559 \\ 2127 \\ 559 \\ 2127 \\ 559 \\ 2127 \\ 559 \\ 2127 \\ 559 \\ 2127 \\ 2058 $	FC 4 88 5 20 5 2 5 7 7 7 6 6 6 5 2 5 7 7 7 6 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 6 5 2 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 6 5 7 7 7 7	x 79213728137012468020123486789789129345817901234581234681012456789011345867890124670121245670123456890123568901235681470	L 111223374455160000011111111111111111111111111111	$\begin{array}{c} F0 \\ 10011 \\ 51506 \\ 10011 \\$	$ \begin{array}{c} rc \\ rc$	H 680434567890101N34567801N34567911201N34567801X34567800X341X3456780201X3456780101N3456780101N3467801N3467801N356801N3567901N		60 70 -756 -735 -2671 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2693 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -2674 -3684 -3775 -3694 -3775 -3695 -3693 -3694 -3794 -3695 -3693 -3694 -3694 -3795 -3694 -3694 -3694 -3694 -3694 -3695		× , , , , , , , , , , , , , , , , , , ,	L 0 111151111111111111111111111111111111	C 4552402813737454209974242054293804373903957109445755045317457401649074003088484843907397402420407390263040739026040400000000000000000000000000000000	H 01112456791012345689102341234567201234567901234567892012345678920123456789123569123569123567923571372468202345678911279123	иясисисисисисисторованатататататататататататататататататата	1 2 -354 2 -354 -324 3 3 -3443 2 -353 -3443 3 3 -443 3 -3443 -3411 3 -3433 -3433 3 -3434 -3432 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3443 -3411 3 -3411 -3444 3 -3411 3 -3411 3 -3443 3 -3411 3 -3411 3 -3411 3 -3411 3 -3411 3 -3411	FC 100330495	x 50780111345769125670111234560123456891235601246834702320246803450789010124#670123456790123456800123456801234569	7 2000000000000000000000000000000000000	F0 4566	FC 4864 -1 - 7-70 -1 - 7-7	1 123467692346123595695246820123456789211367903135601245678134578901246712346012345815606024680346781012456701245	x 6666666666666666666666666667777777777			
123467820123589312358		856 -756 1197 -11038 -1162 580 -390 -601 -839 920 1034 -839 920 1034 1035 -563 1615 -563 1654 -439 -940	844 •727 1076 •1776 •557 •469 •469 •469 •556 1011 1050 914 937 -5374 •937 -5374 •905 -1574 •915 •914 •937 -5374 •905 •915	012468147017836283024	1111111112223333344 11111111222333344 1111111111	-1064 595 -17985 -985 -608 -544 -583 -544 -486 -533 -486 -533 -485 -713 -668 -437 -7361 -7361 -7361 -5501 -6828	-1098 6300 -1748 -1033 -713 -578 -231 -578 -503 483 326 273 -451 297 -713 -433 -7810 -5657 -7226	1235679012337213724680		$\begin{array}{c} -800 & -531 \\ -1712 & -155 \\ 7736 & 631 \\ -1623 & -1032 \\ -1633 & -1032$	0 6 2 100 2 100 3 2 3 2 5 5 5 5 7 8 5 7 8 5 9 6 11 7 2 7 8 5 7 8 8 7 8 7 8 7 8 7 8 7 8 7 9 6 9 6 9 8		0 4200 0 4200 1 220 1 274 1 274 1 229 1 1229 1 1229 1 1229 1 1229 1 1229 1 1229 1 1229 1 1229 1 1229 2 3883 2 -1162 2 -11837 2 -1201 2 -409 2 -40 2 -40 2 -40 2 -40 2 -40 2 -40 2 -40 2 -50 2 -50	-4073 1119 2147 1600 -3016 -1237 1775 -1513 -1533 -1513 -1533 -1513 -1535 -1535 -1555 -1535 -1555	8 9 11 12 7 9 11 2 3 8 2 3 4 6 11 0 1 2 3 4	555555555555555555555555555555555555555	-711 639 -762 738 -563 518 600 362 349 -696 3349 -634 1331 -477 775 -435 -435 -237 -237 458 -2119	-724 817 -718 -718 -744 -509 477 4567 422 -7772 654 4387 422 -7752 654 439 810 -3208 624 2386 416 2217	10 12 0 12 3 4 5 6 9 10 12 3 4 5 6 7 8 9 0	556666666666777777778	323 -338 -338 -3391 -1391 -1391 -3391 -3391 -298 -875 -298 -875 -298 -875 -298 -865 -365 -365 -1344 -1096 -730 -738 -736 -796 -691	322 667 •2319 •1386 •1410 •1410 •1015 •4205 •1015 •4205 •1386 •1386 •105 •1386 •1386 •1605 •1386 •1605 •1386 •1860 •786 •786 •786 •786 •786 •786 •786 •786	245670124560123456890 10124560123456890	222222333344 4444 444	-636 1012 -338 1216 19740 -719 2014 2847 -991 2048 -8697 2048 527 6610 1008 1222	-660 1036 -2850 -2854 1230 -652 2013 -652 2013 -7513 -758 28569 844 1324 522 1667 61038 1237	

н	к	L	FO I	FC :	н	ĸ	L FO	FC	н	к	L F0	۶C	н	ĸ	L FO	FC	н	κц	. FO	FC	H · K	L	FO	FC	н к	L	۴0	FC
	۵	s .	170 -1	25	٦.	R	a 728	678	7	0	5 482	465	4 1	0	2 -1019	-1026	7.	· 7	-500		2 11	•	524	542	3 12	٨	319	411
-		÷	147 -11	R.	ž	ě.	0 510	431		é	6 721	770	6 1	0	2 -766	-834	- á 🕯	č,	-437	-470		ú.	.435	-414	4 12		670	708
		2 1	878 .8		2	Ă	601	- 642	3	ó	6 1027	981	10 1	0	2 -783	-819		čí	-187	-128		ĩ	531	479	1 12	ž	464	449
2	5	2	607 40				-157	- 184		á	6 -764	-769		ō	3 +1426	-1386			-30/	- 320			541	474	1 15	÷,	542	552
- 2	5	2	005 7		•		499	477	-	é	6 192	440		ñ	3 565	573	11		- 704	5/3	6 11		1155	11 17		÷	484	477
2	2	2	245		2		413	486	÷	6	4 405	461	- 13	ō	3 -672	-649			-301	- 475	2 12	ž			1 12	é	-404	-543
÷.	ŝ	2 -1	203 1	70	8	2 1		517	á		7 -175	- 170	5 1	ñ	3 -1436	-1455				- 100	2 12	Ň	1001	1014	4 14	-	407	400
~	ç	2 :	141 12	20	7		807	646	1		7 664	625		ñ	3 681	665	11		-3/9	-352	1 11	š	1111	1 4 1 7	2 13	÷	- 81.6	-850
	5	2 1	000 -0	00	÷		0.2	1007	- 1	ć	7 -342	-273	3 1	ō.	4 .2078	-2086					40 12	š	776	1912	2 1 3	1	-713	-755
1	ŝ		000 -0		2		1 1012	-400	- 2	ć	7 -404	-479		0	4 459	699	31		-50/	-033	10 12			-040	2 13	1	-600	-425
2		0 1	015 9	¥2	9	2 1	1		2		7 454	492		ň	4 -751	+754	21		21	512	3 12.	1.	1015	407		2	121	-025
3	e	· ·	708 0	11	<u>'</u>	2 1	1 /15	400			4 -507	-510	- 11	ň	4 -786	-770		C 10			- 14	1	404	469	3 13		- 4 6 9 1	-1044
2	e .	0 1	321 13		<u> </u>	2.1	2 . 7 . 7	-105	+		8 -430	408		ñ	4 -1361	-1412	31	L 10	-439		2 14		-749	- / 4 4	2 12	ŏ	-1001	- 9 4 4
2			390 3		•	2		-574	2	2	4 470	459		ň	4 -616	-660	11	C 11	-214		6 12	÷.	- 300	4 7 7 2		š	- 1 1 77	-1188
2			6/6 0				+ 000			~	0 -472			ň	4 -1 203	-1198	31	L 11	-/21	/1/	0 12	÷.	1312	1332	7.17			-1100
	. e	• -	336 -2	24	<u> </u>	ž		-/3/		2	0 -545	- 6 / 0		ň	4	-578	0 1	C 11	432	341	1 12	-	- 390	-3/3	0 1			-1002
	8	<u>°</u>	811 8.	30	8	2	0 */41	-/00		2	9 - 909	-455			4 .820	-815	2.1	C 11	-505	-4/8	4 12	2	233	620	3 1	1	227	930
1	2	<i>.</i>	816 8	24	U.	2	1 -430		- 2	2		407			4 .000	-960	2 1	C 12	+415	-369	0 12	2	/0/	680	0 14	4	-1049	-1031
2	e .	2 -	640 -0	42	1	ž	1 209	17	1	2	10 030	401	10		5 760	750	4.1	1 0	447	410	10 12	2	042	040	4 14		-22/	- 201
3	e	4.	826 /	01	3	×.	1 305	343		ž	10 779				5 496	684	8 1	1 0	394	549	1 12	3	¥5/	927	1 14	્ર	-004	-0/3
•	e	/ 1	184 11	82	2	2	1 /19	/84	?	ž	10 3/2				6 000	4075	0 1	1 1	. 394	375	4 12	3	32/	324	2 14	3	-/-/	-00-
5	e	2	794 8	10	•	2	1 •//5	-/91	•		10 531	2.52	2		5 407	10/9	31	1 1	-327	-309	5 12	3	884	950	0 14	- 1	-1036	-1006
6	e	7 -	642 =6	40	2	2	1 593	615	0	2	11		- 63		5	- 1517	4 1	1 1	. 449	388	0 12	1	1642	1612	2 14	- 1	• 227/	-41/
7	8	2	713 5	88	9		1 56/	489	2		11 -999	- 900			4 4007	9933	51	1 1	-520	-513	1 12	1	-550	-535	4 14	. 1	-/11	-000
8	е	2	394 3	98 1	0		1 -490	-483		10	0 -4312		1 1		6 1002	-760	8 1	1 1	383	422	2 12	1	411	450	0 14	. 1	-608	-020
9	8	?	612 6	25 1	1	9	1 499	493	2	10	0 -1/44	-1/13			4 .713	-7.0	91	1 1	•477	-458	3 12	4	706	607	0 14	•	•/•1	-/14
1	8	8 •1	363 -12	80	0	9	3 -291	-200		10	0 -25/4	-2010					31	1 4	-464	• • 12	4 12	÷.	1104	1080	1 14	2		390
2	е	8	681 7	33	3	9	3 +330	-326	6	10	0 -2140	-2135				-01.5	01	1 5	5 1507	1519	6 12	4	912	921	0 15	•	034	03/
3	6	8	484 5	20	3	9	4 638	618	10	10	0 -1274	-1311	•		0 *021	-025	1 1	1 5	5 -327	-298	9 12	÷	550	541				
4	8	8	405 4	25	0	9	5 -1800	-1843	3	10	1 1381	1320	9 3		6 -593	-010	21	1 5	5 697	977	10 12	4	719	695				
6	8	8	315 3	28	1	9	5 413	426		10	1 -439	- 485	1 1	10	/ -5/2	- 004	4 1	1 5	5 618	899	2 12	5	-625	-632				
7	8	8 -	342 -4	03	2	9	5 -1518	•1512	5	10	1 -929	-933	2 :	10	/ 383	*14	61	1 5	5 758	778	3 12	5	-441	-380				
8	8	8	548 4	62	3	9	5 298	165	7	10	1 777	725	3 :	10	/ -567	-001	1 1	1 6	5 -542	-559	6 12	5	-760	-793				
9	8	8	514 4	93	4	9	5 +1248	-1284	0	10	2 -1920	-1899	4 1	10	7 -820	-824	31	1 6	5 -514	-628	0 12	6	865	887				
1	8	9	610 5	65	5	9	5 304	321	1	10.	2 .719	671		10	/ -717	-025	61	1 7	7 417	319	1 12	6	-479	-531				
ž	8	9 -	432 -4	73	6	9	5 -995	-1024	2	10	2 437	397	6 :	10	7 482	509	1 1	18	5 379	398	2 12	6	605	598				

stacking of the layers is different, however. In modification II successive layers are nearly on top of each other. On the other hand, successive layers are shifted by $\frac{1}{2}$ in the y direction in modification I. It can easily be seen from Tables 7 and 8, where all the I...I distances shorter than 4.5 Å are given, that there are no strong intermolecular interactions. In both modifications the $(C_2H_5)_4N^+$ groups lie in holes formed by eight I_3^- ions.

The $(C_2H_5)_4N^+$ ions

In modification I, the nitrogen atoms lie at twofold axes along the y directions whereas in II the groups are placed at general positions. The C-C distances, 1.53 Å on the average, are not significantly different from the accepted value for a single $C(sp^3)-C(sp^3)$ bond. It may be noticed, however, that the average value for the C-N bonds, 1.51 Å, is somewhat larger than the value of 1.47 Å found in $(CH_3)_4NICl_2$ (Visser & Vos, 1964) and in $(CH_3)_4NClO_4$ (McCullough, 1964). The C-C-N angles in the $(C_2H_5)_4N^+$ ions, about 114°, are comparable with the C-C-C angles in paraffin chains, 112–113°.

The I_3^- ions

In $(C_2H_5)_4NI_3$ (I) the I_3^- groups lie at special positions with symmetry 2/m and are thus symmetric. The lengths of the I–I bonds in the two independent symmetrical I_3^- groups are 2.928 and 2.943 Å, e.s.d. 0.0025 Å. We believe that the difference of 0.015 Å (s.d. 0.0035 Å) between these bond lengths cannot be significant, although it is four times its estimated standard deviation. It is generally known that standard deviations as calculated from the least-squares residuals give an underestimate of the experimental errors, especially for structure determinations where good agreement between F_o and F_c is achieved.

The I_3^- ions in II appear to be asymmetric in contradistinction to the geometry of the ions in modification I. The bond lengths are 2.912, 2.961 Å and 2.892, 2.981 Å, e.s.d. 0.0035 Å. The differences between the bond lengths within the ions are 18 and 15 times its estimated standard deviation respectively.

In Table 9 the bond lengths observed for the $I_3^$ ions in different triiodide compounds are compared. The variation in geometry mentioned in the introduction is clearly shown. It is remarkable that in the two modifications of $(C_2H_5)_4NI_3$, ions of different shape have been found with I-I bond lengths ranging from 2.892 to 2.981 Å. In spite of variations in the geometry, the total lengths of the I_3^- ions in the two modifications are not significantly different. For the symmetric ions this length is 5.871 Å on the average and the corresponding value for the asymmetric ions amounts to 5.873 Å. Consequently it is not certain that the total length varies with the asymmetry of the ions, as suggested earlier from the difference in total length observed for the ions in CsI₃ and $(C_6H_5)_4AsI_3$. On the contrary, both for CsI_3 and $(C_6H_5)_4AsI_3$ the total length of the ions is equal to the length observed for the ions in $(C_2H_5)_4NI_3$ (I and II) within experimental error.

The differences in shape of the I_3^- ions in the two modifications of $(C_2H_5)_4NI_3$ indicate that the shape of I_3^- ions in crystals is not dependent only on the size of the surrounding cations, as has been concluded from earlier structure determinations. The results of the present work suggest that there is a close connexion between the shape of the I_3^- ions and the way these ions are surrounded both by positive and negative ions in the crystal. Therefore we are led to ascribe the variations in bond lengths to (electrostatic) crystal field effects. Hence theoretical VESCF molecular orbital calculations were performed by us in the way described by Brown & Nunn (1966) to get a better estimate of the influence of the crystal field.

Theoretical calculations

The method used for the theoretical calculations has essentially been described by Brown & Nunn (hereafter B and N). To perform the semi-empirical calculations, however, a suitable choice of different parameters should be made, and it is in this respect that our approach is different from that of B and N. In Table 10 the two sets of parameters are compared.

In both cases, the Coulomb repulsion integral $\gamma_{\mu\nu}$ is I-A for R=0, and $14\cdot4/R$ for large values of R. At moderate distances our value for $\gamma_{\mu\nu}$ is larger than that

of B and N. This larger value was taken, as in triiodide ions the valence p orbitals are directed along the bonds to neighbouring cores (see Havinga & Wiebenga, 1959), as against the case of organic compounds, where the valence p orbitals are perpendicular to the bonds. The

(a)

.

(*b*)

Fig. 1. Structures of the two modifications of $(C_2H_5)_4NI_3$. (a) $(C_2H_5)_4NI_3$ (I) viewed along [100]. The iodine atoms at heights 0 and c/2 are represented as heavy and light circles respectively. (b) $(C_2H_5)_4NI_3$ (II) viewed along [010]. The iodine atoms at heights b/4 and 3b/4 are represented as heavy and light circles respectively.

I(1) -I(2) I(2) -I(3) I(4) -I(5)	2·981 (0·0035) Å 2·892 (0·0035) 2·912 (0·0035)	I(1) –I(2) –I(3) I(4) –I(5) –I(6)	177·7 (0·1)° 179·5 (0·1)
I(4) = I(5) I(5) = I(6)	2.961 (0.0035)	C(1)-C(2)-N C(4)-C(3)-N	115 (1) 114
C(1) - C(2)	1.49 (0.03)	C(5)-C(6)-N	115
C(3) - C(4)	1.51 (0.03)	C(8)-C(7)-N	113
C(5) - C(6)	1.54 (0.03)	C(2)-NC(3)	111
C(7) - C(8)	1.54 (0.03)	C(2)-NC(6)	111
NC(2)	1.50 (0.03)	C(2)-NC(7)	106
NC(3)	1.52 (0.03)	C(3) - N - C(6)	106
N - C(6)	1.51 (0.03)	C(3) - N - C(7)	112
NC(7)	1.54 (0.03)	C(6)-NC(7)	111
$I(3') \cdots I(5'')$ $I(1) \cdots I(4)$ $I(2) \cdots I(4)$	4·10 4·41 4·24		

Table 8. Distances and angles in (C₂H₅)₄NI₃ (II) with e.s.d.'s in parentheses

Table 9. Bond lengths (Å) in I_3^- ions, with their e.s.d.'s

Compound	R_{12}	R ₂₃	$R_{12} + R_{23}$
(C ₂ H ₅) ₄ NI ₃ (I)	2·928 (0·0025) 2·943 (0·0025)	2·928 (0·0025) 2·943 (0·0025)	5·856 (0·005) 5·886 (0·005)
(C ₂ H ₅) ₄ NI ₃ (II)	2·961 (0·0035) 2·981 (0·0035)	2·912 (0·0035) 2·892 (0·0035)	5·873 (0·0035) 5·873 (0·0035)
CsI ₃	3.04 (0.015)	2.83 (0.015)	5.87 (0.015)
$(C_6H_5)_4AsI_3$	2.91 (0.015)	2.91 (0.015)	5.82 (0.03)*

* The values for $(C_6H_5)_4AsI_3$ are obtained from a recent least-squares refinement of this compound using hol and hk0 data presented by Mooney Slater (1959).

Table 10.	Choice of	of parameters	(in eV)	for the	VESCF-MO	calculations

Coulomb repulsion integra	1
Present work:	$\gamma_{\mu\nu} = 14.4/R$ for $R \ge 3.7$ Å $\gamma_{\mu\nu} = -0.843R + I - A$, linear interpolation between $\gamma_{\mu\nu} = 14.4/R$ for $R = 3.7$ Å and $\gamma_{\mu\nu} = I - A = 7.01$ eV for $R = 0$. R = distance of core centres.
B and N:	I = ionization energy, A = electron affinity. $\gamma_{\mu\nu} = 14 \cdot 4/(a+R)$ with $14 \cdot 4/a = I - A$, the Mataga-Nishimoto formula introduced for organic compounds.
Core resonance integral	
Present work:	$\beta_{\mu\nu} = 1.89R - 7.53$, from spectra, linear interpolation between $\beta_{\mu\nu} = -2.48$ for $R = 2.67$ Å (I ₂ gas) and $\beta_{\mu\nu} = -1.99$ for $R = 2.93$ (I ₃ ⁻ ion).
B and N:	$\beta_{\mu\nu} \simeq 1.24R - 4.58$ (for $R > 2.81$ Å), from iodine dissociation curve.

Compound	Observed distances		Net charges			Bond orders		Potential difference*	
	(Å)	R ₂₃ (Å)	Q_1	<i>Q</i> ₂	Q_3	P ₁₂	P ₂₃	$V_1 - V_2$ (volt)	$V_3 - V_2$ (volt)
$(C_2H_5)_4NI_3$ (I)	2·928 2·943	2·928 2·943	0·50 0·49	$0 \\ -0.02$	-0.50 -0.49	0·707 0·707	0·707 0·707	0·321 0·013	0·321 0·013
(C ₂ H ₅) ₄ NI ₃ (II)	2·892 2·912	2·981 2·961	0·45 0·47	-0.01 - 0.02	-0.54 - 0.51	0·736 0·719	0∙677 0∙695	0·022 0·072	0·379 0·174
CsI_3 (C_6H_5) ₄ AsI ₃	2·83 2·91	3·04 2·91	-0.37 -0.48	0 -0.04	-0.63 -0.48	0·792 0·706	0·611 0·706	-0.236 - 0.184	1.030 -0.185

Table 11. Results of the VESCF calculations on triiodide ions, I₁-I₂-I₃

* Potential difference caused by the external charges.

Fig. 2. Bond length – bond order curve for I_3^- ions.

critical value of R (3.7 Å) in our expression for $\gamma_{\mu\nu}$ is the shortest non-bonded distance between neighbouring ions in the crystal, and beyond that distance no difference is thus made for the calculation of potentials due to charged groups within or outside the I_3^- ion considered.

We preferred an estimate of $\beta_{\mu\nu}$ from the spectra of iodine gas (Asundi & Venkateswarlu, 1947) and of triiodide ions in solution (Popov & Swensen, 1955) above the $\beta_{\mu\nu}$ values estimated by B and N from the iodine dissociation curve. In the latter estimate errors due to inner shell repulsions will occur; moreover the SCF wave functions are unsatisfactory for large atomic distances. In estimating $\beta_{\mu\nu}$ we used the $\gamma_{\mu\nu}$ values mentioned above. The spectra were analysed as described by Wiebenga (Wiebenga, 1965; Internal Report, available from the authors): the line of $6 \cdot 1$ eV in the spectrum of iodine gas was assigned to a transition from the bonding to the anti-bonding orbital in iodine, the average value of the bands at 4.28 and 3.44 eV in the I_3^- spectrum was taken as the transition energy from the non-bonding to the anti-bonding orbital in these ions.

The results of the VESCF calculations on the triiodine ions in the different crystals are listed in Table 11. A plot of the calculated bond orders *versus* the observed bond lengths is shown in Fig.2. Within the range of the triiodide ions the relation between P and R can be approximated by a straight line. Only the short and rather inaccurately determined I–I bond in $(C_6H_5)_4AsI_3$ shows a marked, though not significant, deviation from this line. It may thus be concluded that the variations in bond lengths observed for the triiodide compounds may be explained from crystal field effects.

To check whether the bond length in $(C_6H_5)_4AsI_3$ is really equal to those in the remaining symmetric $I_3^$ ions a three-dimensional refinement of the crystal structure of this compound will be undertaken shortly.

We are indebted to Prof. E. H. Wiebenga for many valuable discussions, to Drs. R. Olthof for programming the VESCF and potential calculations and to Drs. J. L. de Boer and Mr J. Heystek for their assistance during the experimental work. The calculations were done at the Groningen University Computing Centre. We gratefully acknowledge the support of the Netherlands Organization for the Advancement of Pure Research.

References

- ASUNDI, R. K. & VENKATESWARLU, P. (1947). Indian J. Phys. 21, 110.
- BROEKEMA, J., HAVINGA, E. E. & WIEBENGA, E. H. (1957). Acta Cryst. 10, 596.
- BROWN, R. D. & NUNN, E. K. (1966). Aust. J. Chem. 19, 1567.
- BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- HACH, R. J. & RUNDLE, R. E. (1951). J. Amer. Chem. Soc. 73, 4321.
- HAVINGA, E. E., BOSWIJK, K. H. & WIEBENGA, E. H. (1954). Acta Cryst. 7, 487.
- HAVINGA, E. E. & WIEBENGA, E. H. (1958). Acta Cryst. 11, 733.
- HAVINGA, E. E. & WIEBENGA, E. H. (1959). Rec. trav. chim. Pays-Bas, 78, 724.
- McCullough, J. D. (1964). Acta Cryst. 17, 1067.
- MOONEY, R. C. L. (1935). Z. Kristallogr. 90, 143.
- MOONEY SLATER, R. C. L. (1959). Acta Cryst. 12, 187.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- POPOV, A. I. & SWENSEN, R. F. (1955). J. Amer. Chem. Soc. 77, 3724.
- RUNDLE, R. E. (1961). Acta Cryst. 14, 585.
- SLATER, J. C. (1959). Acta Cryst. 12, 197.
- TASMAN, H. A. & BOSWIJK, K. H. (1955). Acta Cryst. 8, 59.
- VISSER, G. J. & Vos, A. (1964). Acta Cryst. 17, 1336.
- WIEBENGA, E. H. (1965). Internal Report, Mathematical Institute, Univ. of Oxford.